资源类型

期刊论文 4

年份

2023 1

2019 1

2016 1

2011 1

关键词

检索范围:

排序: 展示方式:

Application of python-based Abaqus preprocess and postprocess technique in analysis of gearbox vibration

Guilian YI, Yunkang SUI, Jiazheng DU

《机械工程前沿(英文)》 2011年 第6卷 第2期   页码 229-234 doi: 10.1007/s11465-011-0128-z

摘要:

To reduce vibration and noise, a damping layer and constraint layer are usually pasted on the inner surface of a gearbox thin shell, and their thicknesses are the main parameters in the vibration and noise reduction design. The normal acceleration of the point on the gearbox surface is the main index that can reflect the vibration and noise of that point, and the normal accelerations of different points can reflect the degree of the vibration and noise of the whole structure. The K-S function is adopted to process many points’ normal accelerations as the comprehensive index of the vibration characteristics of the whole structure, and the vibration acceleration level is adopted to measure the degree of the vibration and noise. Secondary development of the Abaqus preprocess and postprocess on the basis of the Python scripting programming automatically modifies the model parameters, submits the job, and restarts the analysis totally, which avoids the tedious work of returning to the Abaqus/CAE for modifying and resubmitting and improves the speed of the preprocess and postprocess and the computational efficiency.

关键词: Abaqus secondary development     Python language     vibration and noise reduction     K-S function     vibration acceleration level    

Evaluation of the stability of terraced slopes in clayey gravel soil using a novel numerical technique

《结构与土木工程前沿(英文)》 2023年 第17卷 第5期   页码 796-811 doi: 10.1007/s11709-023-0922-9

摘要: Conventional geotechnical software limits the use of the strength reduction method (SRM) based on the Mohr–Coulomb failure criterion to analyze the slope safety factor (SF). The use of this constitutive model is impractical for predicting the behavior of all soil types. In the present study, an innovative numerical technique based on SRM was developed to determine SF using the finite element method and considering the extended Cam–clay constitutive model for clayey gravel soil as opposed to the Mohr–Coulomb model. In this regard, a novel user subroutine code was employed in ABAQUS to reduce the stabilizing forces to determine the failure surfaces and resist and drive shear stresses on a slope. After validating the proposed technique, it was employed to investigate the performance of terraced slopes in the context of a case study. The impacts of geometric parameters and different water table elevations on the SF were examined. The results indicated that an increase in the upper and lower slope heights led to a decrease in SF, and a slight increase in the horizontal offset led to an increase in the SF. Moreover, when the water table elevation was lower than the toe of the terraced slope, the SF increased because of the increase in the uplift force as a resistant component.

关键词: terraced slope     safety factor     finite element method     ABAQUS     extended Cam–clay    

Practical optimization of deployable and scissor-like structures using a fast GA method

M. SALAR, M. R. GHASEMI, B. DIZANGIAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 557-568 doi: 10.1007/s11709-018-0497-z

摘要: This paper addresses practical sizing optimization of deployable and scissor-like structures from a new point of view. These structures have been recently highly regarded for beauty, lightweight, determine behavior, proper performance against lateral loads and the ability of been compactly packaged. At this time, there is a few studies done considering practical optimization of these structures. Loading considered here includes wind and gravity loads. In foldable scissor-like structures, connections have a complex behavior. For this reason, in this study, the authors used the ABAQUS commercial package as an analyzer in the optimization procedure. This made the obtained optimal solutions highly reliable from the point of view of applicability and construction requirements. Also, to do optimization task, a fast genetic algorithm method, which has been recently introduced by authors, was utilized. Optimization results show that despite less weight for aluminum models than steel models, aluminum deployable structures are not affordable because they need more material than steel structures and cause more environmental damage.

关键词: optimization     scissor-like structures     deployable structures     genetic algorithm     ABAQUS    

Numerical simulation of squat reinforced concrete wall strengthened by FRP composite material

Ali KEZMANE,Said BOUKAIS,Mohand Hamizi

《结构与土木工程前沿(英文)》 2016年 第10卷 第4期   页码 445-455 doi: 10.1007/s11709-016-0339-9

摘要: The advanced design rules and the latest known earthquakes, have imposed a strengthening of reinforced concrete structures. Many research works and practical achievements of the application of the external reinforcement by using FRP composite materials have been particularly developed in the recent years. This type of strengthening seems promising for the seismic reinforcement of buildings. Among of the components of structures that could affect the stability of the structure in case of an earthquake is the reinforced concrete walls, which require in many cases a strengthening, especially in case where the diagonal cracks can be developed. The intent of this paper is to present a numerical simulation of squat reinforced concrete wall strengthened by FRP composite material (carbon fiber epoxy). The intent of this study is to perform finite element model to investigate the effects of such reinforcement in the squat reinforced concrete walls. Taking advantage of a commercial finite element package ABAQUS code, three-dimensional numerical simulations were performed, addressing the parameters associated with the squat reinforced concrete walls. An elasto-plastic damage model material is used for concrete, for steel, an elastic-plastic behavior is adopted, and the FRP composite is considered unidirectional and orthotropic. The obtained results in terms of displacements, stresses, damage illustrate clearly the importance of this strengthening strategy.

关键词: simulation     strengthening     reinforced concrete wall     squat wall     FRP composite material     damage     Abaqus    

标题 作者 时间 类型 操作

Application of python-based Abaqus preprocess and postprocess technique in analysis of gearbox vibration

Guilian YI, Yunkang SUI, Jiazheng DU

期刊论文

Evaluation of the stability of terraced slopes in clayey gravel soil using a novel numerical technique

期刊论文

Practical optimization of deployable and scissor-like structures using a fast GA method

M. SALAR, M. R. GHASEMI, B. DIZANGIAN

期刊论文

Numerical simulation of squat reinforced concrete wall strengthened by FRP composite material

Ali KEZMANE,Said BOUKAIS,Mohand Hamizi

期刊论文